Monday 1 April 2013



  Kalau seorang guru mengajar sambil duduk, Murid belajar sambil mengantuk.
 Kalau seorang guru mengajar sambil berlakon, Murid belajar dengan tekun.
 Kalau seorang guru mengajar tanpa alat, Murid belajar dengan ralat.
 Kalau seorang guru mengajar banyak bercakap, ada murid yang bertambah gagap.
 Kalau seorang guru menjadi pemudah cara, ramai murid pandai berbicara.
 Kalau seorang guru mengajar tanpa menilai, tidak akan tahu murid yang bodoh atau pandai. 
Kalau seorang guru berbudi bahasa, dikenang murid sepanjang masa.

Sunday 10 March 2013

Penjelmaan III

Nota handwiting boleh diakses dibawah ini sebagai rujukan. Semoga ianya bermanfaat.

Penjelmaan - Translasi, Pantulan, Putaran & Pembesaran by zikri_hakeem

credit to : http://tutorialmatematik.blogspot.com/

Monday 9 July 2012

PROBABILITY I

Sample Space
Important concept:
·         An experiment is a process or action to observe its outcomes.
·         A sample space is the set of all possible outcomes from an experiment. It can be represented in the form of set notation.
·         Example : S ={(1,2),(1,3),(1,4)}

Example 1
Experiment: Tossing a fair coin
Sample space,
 S = {Head, Tail}

Example 2
Experiment:  A fair six-sided die is rolled.
Sample space, S ={1,2,3,4,5,6}

Example 3
Experiment: Drawing a ball from a bag containing three balls of the same size: white, black and green.
Sample space, S = {white ball, black ball, green ball}

STATISTICS I AND II


            
   MODE

The mode is the most common value or the item with the highest frequency

Examples
Find the mode for the following set of data.

a.         2,  1,  3,  2,  5,  3,  2,  5,  6,  3,  3,  4


Cloud Callout: Which data has the highest frequency !!!
 





   



            Mode = 3

b.         7,  4,  3,  4,  8,  7,  5,  4,  3

            Mode = 4

c.        
Number
Of goals
0
1
2
3
4
Frequency
3
6
7
5
2

Oval Callout: The highest 
frequency 





            Mode = 2

d.        
Grade
A
B
C
D
E
Frequency
6
8
7
6
2


            Mode = Grade B








Exercice  8.2

a.         20 kg,  50 kg,  30 kg,  70 kg, 50 kg, 
            40 kg,  30 kg,  60 kg,  50 kg,  60 kg,
            50 kg,  60 kg

            Mode  =  _____ kg


b.         15 cm,  18 cm,  12 cm,  13 cm,  15 cm, 
17 cm,  12 cm,  16 cm,  15 cm,  13 cm, 
14 cm,  15 cm

Mode  = ______  cm

           
c.         4,  5,  4,  2,  1,  4,  6,  7,  5,  6

            Mode  =


d.        
Number of matches played
1
2
3
4
5
Frequency
1
2
5
3
3


            Mode  =  _______matches


e.        
Height
( cm )
120
121
122
123
124
Frequency
5
6
8
12
9

           
Mode  =         cm

f.         
Number
Of goals
0
1
2
3
4
Frequency
2
5
4
4
3

            Mode  =          goals


8.3       MEDIAN

The median is the value which is located in the middle of the set of values that has been arranged in increasing or decreasing order.

Examples

Determine the median from the following sets of data.

a.         2, 6, 9, 4, 3, 4, 5, 6, 7


Rectangular Callout: Re-arrange the numbers in sequence
 





            2,  3,  4,  4,  5,  6,  6,  7,  9

            Median  =  5


b.         9,  7,  3,  4,  8,  6,  7
            =  3,  4,  6,  7,  7,  8,  9

            Median  =  7   


c..        10kg,  12kg,  18kg,  10kg,  16kg
            =  10,  10,  12,  16,  18

            Median  =  12kg


d.         RM5,  RM7,  RM9,  RM6,  RM8,  RM6,     
             RM10,  RM9
            =  5,    6,    6,    7,    8,    9,    9,    10


            Median  =

                        =  RM7.50




Exercise 8.3

a.         3,  2,  3,  4,  7,  2,  1

            Median  =


b.         9,  2,  5,  1,  8,  9,  0

            Median  =


c.         2kg,  4kg,  1kg,  5kg,  4kg,  3kg

            Median  =


d.         20cm,  10cm,  30cm,  10cm,  40cm

            Median  =

e.          
Number
Of goals
0
1
2
3
4
Frequency
2
5
4
4
2

            Total frequency  = 2 + 5 + 4 + 4 + 2  =

Median  =  Number of goals of the  ___ th
                  Frequency

             =       goals
 
 f.        
Grade
A
B
C
D
E
Numbers of students
6
12
9
8
2

            Total frequency  = 6 + 12 + 9 + 8 + 2  =

Median  =  Grade of the ____th students

             =      



8.4       MEAN

Mean is the sum of all the values divided by the number of data  
                   
When a set of data is given in a frequency table,

ALGEBRAIC EXPRESSION I, II, III


·         Unknown
·         Important Concept
·         ‘An unknown is a quantity whose value has not been determined’
            4.1.1
Example

Exercise
  1. Azmi bought some durians

      Solution:
     
      The unknown is the number of   durian.
1.



2.




3.




4.




5.





There were a lot of people in the fun fair.
Solution:


Mr.Tan lost a large amount of money when he dropped his wallet
Solution:


A number of students are studying in the library.
Solution:


My father bought a few kilograms of rambutans yesterday.
Solution:


Ketty gained a few kilograms of weight during the holidays
Solution:





  • Algebraic term
·         identifying algebraic terms with one unknown.

·         Important  concept:
·         ‘An algebraic term with one unknown is the product of a number and an unknown  
 4.1.2

EXAMPLE

EXERCISE

 is the multiplication of the number   6 with the unknown 



1.



2.



Determine the algebraic term with one unknown for each of the following.
3e
Solution:


-5t
Solution:

LINEAR EQUATIONS


3.1 Solutions of Linear Equations in One Unknown

·         Solve linear equations = Finding the value of the unknown which satisfies the equation.
·         The solution of the equation is also known as the root of the equation.
·         A linear equation in one unknown has only one root.
·         To determine whether a given value is a solution of an equation, substitute the value into the equation. If the sum of the left hand side (LHS) = sum of right hand side (RHS), then the given value is a solution.

3.2 Solving Linear Equations in One Unknown through the operations  +,  –   ,   and

            There are 4 different forms of linear equation as follows :

Type
Equation
Operation
Solution
I
x + a = b
 –
x = b – a
II
x – a = b
+
x = b + a
III
ax = b
x =
IV
 x = a b